INTERDIGITAL.

D2D NEIGHBOR DISCOVERY INTERFERENCE MANAGEMENT FOR LTE SYSTEMS

Y. Zhao, B. Pelletier, P. Marinier and D. Pani

Globecom 2013

invention I collaboration I contribution

Outline

- Background
- System Model
- Interference Management Techniques
- Methodology
- Experimental results
- Summary and Conclusion

Background

- Proximity detection is motivated by the desire to provide new services to mobile devices targetting:
 - Social applications
 - Advertisement
 - Local-based services
- Current cellular-based systems such LTE do not have mechanisms for precise location information
 - Precise location systems rely on combination of cellular, GPS and WiFi
 - This approach is inefficient from a battery and resource perspective
- In D2D discovery, two or more devices determine their proximity based on direct radio communications
- Implemented in LTE, D2D discovery has the potential to provide energy efficient, low-cost ubiquitous proximity information and further enable D2D communications

System Model

- Uplink frequency is used for transmission of D2D discovery signal
- Set of UL resources are reserved for D2D discovery
- Neighbor eNBs use the same resources and are assumed coarsely synchronized
- Individual discovery signals occupy N_{PRB} resource blocks
- Discovery signals are transmitted over specific discovery resource units R_i

INTERDIGITAL

LTE Resource Allocation

System Model

Signal Design

- Assume a signal-based discovery carrying no payload
- Signal based on Zadoff-Chu (ZC) sequences of a specific length $N\downarrow_{ZC}$
- Discovery signals $x \downarrow k$ $(n+\sigma)$ is characterized by root (k) and cyclic shift (σ) combination, with correlation property $\rho \downarrow k, q$ (σ) such that:

 $\rho \downarrow k, q (\sigma) = \{ \blacksquare \sum n = 0 \uparrow N \downarrow zc - 1 \implies x \downarrow k (n) x \downarrow q \uparrow * (n + \sigma) = \delta(\sigma) \\ k = q \sum n = 0 \uparrow N \downarrow zc - 1 \implies x \downarrow k (n) x \downarrow q \uparrow * (n + \sigma) = 1 / \sqrt{N \downarrow zc}$ $k \neq q$

- Interference between discovery signals caused by:
 - 1. Signals with same ZC roots and same cyclic shift (collision)
 - 2. Signals with different ZC roots, regardless of cyclic shifts
- Up to $N\downarrow_{ZC}$ cyclic shifts can be allocated for each ZC root

System Model

Interference Model

- In practice a limited number of discovery resource units are allocated
- Baseline assumption: each eNB assigns a different set of root sequences
 - Inter-cell interference arises from all D2D UEs transmitting in the other cell over the same discovery resource unit
 - Intra-cell interference arises from UEs allocated with a different root sequence (due to e.g. running out of cyclic shifts for a given root) also transmitting in the same discovery resource unit

Interference Management Techniques – Option 1

- Each eNB assigns the discovery resources and uses a different pool of root sequences
- All cyclic shifts of a given root sequence are allocated before a new discovery resource unit is allocated
- All discovery resource units are allocated before a second root sequence is allocated on an already allocated discovery resource unit

Interference Management Techniques – Option 2

- Similar to Option 1:
 - Each eNB assigns the discovery resources and uses a different pool of root sequences
 - All discovery resource units are allocated before a second root sequence is allocated on an already allocated discovery resource unit
- Discovery resource unit are assigned in alternance to randomize interference in frequency

Interference Management Techniques – Option 3

- Option 3 is motivated by the observation that the cell-edge UEs suffer more from inter-cell interference than cell-center UEs
- Discovery resource units are seggregated between cell-edge UEs and cellcenter UEs
- Resources are assumed to be assigned by a centralized controller

Methodology

The experiment consists of a set of system-level simulations where:

- $N\downarrow TX$ transmitting and $N\downarrow RX$ monitoring UEs are dropped uniformly in each sector
- The path loss between each transmit-receive UE pair (*l*,*m*) is calculated (*PL*↓*l*,*m*)
- The resource allocation according to one of the option is carried out
- The SINR at receiver *l* for a given target transmit UE *m* with TX power $P\downarrow TX,m$ is calculated as follows:
- $SINR\downarrow l, m = P\downarrow TX, m / PL\downarrow l, m / P\downarrow I, l + \sigma\downarrow w^{2}$

where $\sigma \downarrow w \uparrow 2$ is the thermal noise power and $P \downarrow I, l$ is the interference term derived from the discovery signal properties as follows:

- $P \downarrow I, l = \sum m \in \mathcal{U}(l) \uparrow m \rho \downarrow \mathcal{R}(m), \mathcal{R}(l) (\mathcal{C}(m) \mathcal{C}(l)) P \downarrow TX, m / PL \downarrow l, m$ $\mathcal{C}(m)$ and $\mathcal{R}(m)$ are the cyclic shifts and root sequences of UE m, respectively.
- Statistics are accumulated over multiple drops to emulate UE mobility

Methodology

- Probability of missed detection $(P \downarrow m)$:
 - In this experiment $P \downarrow m$ is determined analytically based on the properties of the discovery signal and the characteristics of each drop
 - This model assumes that the total interference is spectrally white
- False alarm probability $(P\downarrow fa)$:
 - The false alarm probability is the probability that a UE detects the presence of another UE in proximity, where in fact there is no such UE present
 - $P\downarrow fa$ is also determined analytically
- Range:
 - The distance for which 95% or more of the discovery signals are discovered at a target false alarm probability of 0.1%

Simulation assumptions

Cat.	Parameter	Value
Deployment	ISD	500 m
	Distribution of devices	Uniformly
	Mobility	3 km/hr
	Centre carrier frequency	2 GHz
	System bandwidth (BW)	10 MHz
Channel model	Path loss model	Indoor Hotspot NLOS
	Shadowing standard deviation	4 dB
Device params.	Antenna gain	0 dBi
	Noise figure	9 dB
	Antenna height	1.5 m
	Number of Tx and Rx antennas	1 Tx / 2 Rx

at.	Parameter	Value
Discovery signal parameters	Length of discovery signal	800 µs
	Length of cyclic prefix	12.5 μs
	D	12.5 μs
	NRB	6 RBs
	Ndru	2
	Discovery bandwidth Ndbw	12 RBs
	Ncs	64
	Target false alarm rate	0.1%
	Target detection rate	95%
	Target detection range	200 m
	NTx	30 / sector
	NRx	60 / sector

INTERDIGITAL.

С

Experimental Results

P_m for cell-edge devices

- Cell-edge devices are those worst 10% UEs w.r.t. the distance to the eNB.
- Cell-edge device suffer a 2dB loss at
 P↓m =1% compare
 to the cell average

Experimental Results

P_m for Options 1-3

Experimental Results

Range for Option 1-3

Summary and Conclusions

- This studies interference management for D2D discovery in the context of LTE systems
- Various practical options for resource allocations are studied
- The experimental results show that:
 - D2D discovery signal inter-cell interference has the potential to significantly impact the D2D discovery detection range
 - allocating the D2D discovery resources for cell-edge UEs using a centralized approach has to potential to (almost) eliminate the loss in D2D discovery detection range due to inter-cell interference