research Paper  /  Dec 2016 / Machine/Deep Learning/AI, Network & Communications
Accounts are often shared by multiple users, each of them having different item consumption and temporal habits. Identifying of the active user can lead to improvements in a variety of services by switching from account personalized services to user personalized services. To do so, we develop a topic model extending the Latent Dirichlet Allocation using a hidden…
research Paper  /  May 2017 / Machine/Deep Learning/AI, Network & Communications
Les liens DSL peuvent subir des pannes sporadiques entraînant des deconnexions ou un acces Internet dégradé. Ces pannes sont a l’origine d’une expérience utilisateur négative et générent des coûts pour les fournisseurs d’accès Internet (FAI) via des appels d’assistance technique. La prediction de pannes permet aux FAI de mettre en oeuvre des mesures proactives d…
research Paper  /  Nov 2017 / Machine/Deep Learning/AI, Network & Communications
The success of Google’s PageRank algorithm popularized graphs as a tool to model the web’s navigability. At that time, the web topology was resulting from human edition of hyper-links. Nowadays, that topology is mostly resulting from algorithms. In this paper, we propose to study the topology realized by a class of such algorithms: recommenders. By modeling the …
research Paper  /  Nov 2019 / Network & Communications, Machine/Deep Learning/AI
Efficient Nearest Neighbor (NN) search in high-dimensional spaces is a foundation of many multimedia retrieval systems. A common approach is to rely on Product Quantization, which allows the storage of large vector databases in memory and efficient distance computations. Yet, implementations of nearest neighbor search with Product Quantization have their perform…
research Paper  /  Oct 2018 / Machine/Deep Learning/AI, Network & Communications
"A recently celebrated kind of deep neural networks is Generative Adversarial Networks. GANs are generators of samples from a distribution that has been learned; they are up to now centrally trained from local data on a single location.
research Paper  /  Oct 2017 / Machine/Deep Learning/AI, Network & Communications
A large portion of data mining and analytic services use modern machine learning techniques, such as deep learning. The state-of-the-art results by deep learning come at the price of an intensive use of computing resources. The leading frameworks (e.g., TensorFlow) are executed on GPUs or on high-end servers in datacenters. On the other end, there is a prolifera…
research Paper  /  May 2016 / Machine/Deep Learning/AI, Network & Communications
Détecter au plus tôt les utilisateurs importants dans les réseaux sociaux est un problème majeur. Les services de classement d'utilisateurs (peer ranking) sont maintenant des outils bien établis, par des sociétés comme PeerIndex, Klout ou Kred. Leur fonction est de ``classer'' les utilisateurs selon leur influence. Cette notion est néanmoins abstraite, et les mé…
research Paper  /  May 2017 / Machine/Deep Learning/AI, Network & Communications
La recommandation joue un rôle central dans le e-commerce et dans l'industrie du divertissement. L'intérêt croissant pour la transparence algorithmique nous motive dans cet article à observer les résultats de recommandations sous la forme d'un graphe capturant les navigations proposées dans l'espace des items. Nous argumentons qu'une telle approche en "boite noi…
research Paper  /  Mar 2017 / Machine/Deep Learning/AI, Network & Communications
Ensuring the early detection of important social network users is a challenging task. Some peer ranking services are now well established, such as PeerIndex, Klout, or Kred. Their function is to rank users according to their influence. This notion of influence is however abstract, and the algorithms achieving this ranking are opaque. Following the rising demand …
research Paper  /  Dec 2015 / Network & Communications
Aggregation of streamed data is key to the expansion of the Internet of Things. This paper addresses the problem of designing a topology for reliably aggregating data flows from many devices arriving at a datacenter. Reliability here means ensuring operation without data loss. We seek a frugal solution that prevents wasteful resource consumption (over-provisioni…
research Paper  /  Oct 2017 / Machine/Deep Learning/AI, Network & Communications
Some structural characteristics of online discussions have been successfully modeled in the recent years. When parameters of these models are properly estimated, the models are able to generate synthetic discussions that are structurally similar to the real discussions. A common aspect of these models is that they consider that all users behave according to the …