This paper describes a novel scheme to reduce the quantization noise of compressed videos and improve the overall coding performances. The proposed scheme first consists in clustering noisy patches of the compressed sequence. Then, at the encoder side, linear mappings are learned for each cluster between the noisy patches and the corresponding source patches. The linear mappings are then transmitted to the decoder where they can be applied to perform de-noising. The method has been tested with the HEVC standard, leading to a bitrate saving of up to 9.63%.
Clustering-Based Linear Mappings Learning For Quantization Noise Removal
Clustering-Based Linear Mappings Learning For Quantization Noise Removal
Clustering-Based Linear Mappings Learning For Quantization Noise Removal
Related Content
The human visual system (HVS) non-linearly processes light from the real world, allowing us to perceive detail over a wide range of illumination. Although models that describe this non-linearity are constructed based on psycho-visual experiments, they generally apply to a limited range of illumination and therefore may not fully explain the behavior of the HVS u…
We present a new method for reconstructing a 4D light field from a random set of measurements. A 4D light field block can be represented by a sparse model in the Fourier domain. As such, the proposed algorithm reconstructs the light field, block by block, by selecting frequencies of the model that best fits the available samples, while enforcing orthogonality wi…
Webinar /Jun 2024
Blog Post /Jun 2025
Blog Post /Jun 2025