We consider example-guided audio source separation approaches, where the audio mixture to be separated is supplied with source examples that are assumed matching the sources in the mixture both in frequency and time. These approaches were successfully applied to the tasks such as source separation by humming, score-informed music source separation, and music source separation guided by covers. Most of proposed methods are based on nonnegative matrix factorization (NMF) and its variants, including methods using NMF models pre-trained from examples as an initialization of mixture NMF decomposition, methods using those models as hyperparameters of priors of mixture NMF decomposition, and methods using coupled NMF models. Moreover, those methods differ by the choice of the NMF divergence and the NMF prior. However, there is no systematic comparison of all these methods. In this work, we compare existing methods and some new variants on the score-informed and cover-guided source separation tasks.
Comparative study of example-guided audio source separation approaches based on nonnegative matrix factorization
Comparative study of example-guided audio source separation approaches based on nonnegative matrix factorization
Comparative study of example-guided audio source separation approaches based on nonnegative matrix factorization
Related Content
To work at scale, a complete image indexing system comprises two components: An inverted file index to restrict the actual search to only a subset that should contain most of the items relevant to the query; An approximate distance computation mechanism to rapidly scan these lists. While supervised deep learning has recently enabled improvements to the latter, t…
This article presents an empirical study that investigated and compared two “big data” text analysis methods: dictionary-based analysis, perhaps the most popular automated analysis approach in social science research, and unsupervised topic modeling (i.e., Latent Dirichlet Allocation [LDA] analysis), one of the most widely used algorithms in the field of compute…
The ability of multimedia data to attract and keep people’s interest for longer periods of time is gaining more and more importance in the fields of information retrieval and recommendation, especially in the context of the ever growing market value of social media and advertising. In this chapter we introduce a benchmarking framework (dataset and evaluation too…
Webinar /Jun 2024
Blog Post /Jun 2025
Blog Post /Jun 2025