We present a new method for reconstructing a 4D light field from a random set of measurements. A 4D light field block can be represented by a sparse model in the Fourier domain. As such, the proposed algorithm reconstructs the light field, block by block, by selecting frequencies of the model that best fits the available samples, while enforcing orthogonality with the approximation residue. The method achieves a very high reconstruction quality, in terms of Peak Signal-to-Noise Ratio (PSNR). Experiments on several datasets show significant quality improvements of more than 1dB compared to state-of-the-art algorithms.
Compressive 4D Light Field Reconstruction Using Orthogonal Frequency Selection
Compressive 4D Light Field Reconstruction Using Orthogonal Frequency Selection
Compressive 4D Light Field Reconstruction Using Orthogonal Frequency Selection
Related Content
The ability of multimedia data to attract and keep people’s interest for longer periods of time is gaining more and more importance in the fields of information retrieval and recommendation, especially in the context of the ever growing market value of social media and advertising. In this chapter we introduce a benchmarking framework (dataset and evaluation too…
The human visual system (HVS) non-linearly processes light from the real world, allowing us to perceive detail over a wide range of illumination. Although models that describe this non-linearity are constructed based on psycho-visual experiments, they generally apply to a limited range of illumination and therefore may not fully explain the behavior of the HVS u…
Webinar /Jun 2024
Blog Post /Jun 2025
Blog Post /Jun 2025