To enable light fields of large environments to be captured, they would have to be sparse, i.e. with a relatively large distance between views. Such sparseness, however, causes subsequent processing to be much more difficult than would be the case with dense light fields. This includes segmentation. In this paper, we address the problem of meaningful segmentation of a sparse planar light field, leading to segments that are coherent between views. In addition, uniquely our method does not make the assumption that all surfaces in the environment are perfect Lambertian reflectors, which further broadens its applicability. Our fully automatic segmentation pipeline leverages scene structure, and does not require the user to navigate through the views to fix inconsistencies. The key idea is to combine coarse estimations given by an over-segmentation of the scene into super-rays, with detailed ray-based processing. We show the merit of our algorithm by means of a novel way to perform intrinsic light field decomposition, outperforming state-of-the-art methods.
Light-Field Surface Color Segmentation with an Application to Intrinsic Decomposition
Light-Field Surface Color Segmentation with an Application to Intrinsic Decomposition
Light-Field Surface Color Segmentation with an Application to Intrinsic Decomposition
Related Content
The human visual system (HVS) non-linearly processes light from the real world, allowing us to perceive detail over a wide range of illumination. Although models that describe this non-linearity are constructed based on psycho-visual experiments, they generally apply to a limited range of illumination and therefore may not fully explain the behavior of the HVS u…
We present a new method for reconstructing a 4D light field from a random set of measurements. A 4D light field block can be represented by a sparse model in the Fourier domain. As such, the proposed algorithm reconstructs the light field, block by block, by selecting frequencies of the model that best fits the available samples, while enforcing orthogonality wi…
Webinar /Jun 2024
Blog Post /Jun 2025
Blog Post /Jun 2025