This paper addresses the estimation of accurate long-term dense motion fields from videos of complex scenes. With computer vision applications such as video editing in mind, we exploit optical flows estimated with various inter-frame distances and combine them through multi-step integration and statistical selection (MISS). In this context, managing numerous combinations of multi-step optical flows requires a complexity reduction scheme to overcome computational and memory issues. Our contribution is two-fold. First, we provide an exhaustive analysis of available single-reference complexity reduction strategies. Second, we propose a simple and efficient alternative related to multi-reference frames multi-step integration and statistical selection (MR-MISS). Our method automatically inserts intermediate reference frames once matching failures are detected to re-generate the motion estimation process and re-correlates the resulting dense trajectories. By this way, it reaches longer accurate displacement fields while efficiently reducing the complexity. Experiments on challenging sequences reveal improved results compared to state-of-the-art methods including existing MISS schemes both in terms of complexity reduction and accuracy improvement.
Multi-reference combinatorial strategy towards longer long-term dense motion estimation
Multi-reference combinatorial strategy towards longer long-term dense motion estimation
Multi-reference combinatorial strategy towards longer long-term dense motion estimation
Related Content
The human visual system (HVS) non-linearly processes light from the real world, allowing us to perceive detail over a wide range of illumination. Although models that describe this non-linearity are constructed based on psycho-visual experiments, they generally apply to a limited range of illumination and therefore may not fully explain the behavior of the HVS u…
We present a new method for reconstructing a 4D light field from a random set of measurements. A 4D light field block can be represented by a sparse model in the Fourier domain. As such, the proposed algorithm reconstructs the light field, block by block, by selecting frequencies of the model that best fits the available samples, while enforcing orthogonality wi…
Webinar /Jun 2024
Blog Post /Jun 2025
Blog Post /Jun 2025