The ability of multimedia data to attract and keep people’s interest for longer periods of time is gaining more and more importance in the fields of information retrieval and recommendation, especially in the context of the ever growing market value of social media and advertising. In this chapter we introduce a benchmarking framework (dataset and evaluation tools) designed specifically for assessing the performance of media interestingness prediction techniques. We release a dataset which consists of excerpts from 78 movie trailers of Hollywood-like movies. These data are annotated by human assessors according to their degree of interestingness. A real-world use scenario is targeted, namely interestingness is defined in the context of selecting visual content for illustrating a Video on Demand (VOD) website. We provide an in-depth analysis of the human aspects of this task, i.e., the correlation between perceptual characteristics of the content and the actual data, as well as of the machine aspects by overviewing the participating systems of the 2016 MediaEval Predicting Media Interestingness campaign. After discussing the state-of-art achievements, valuable insights, existing current capabilities as well as future challenges are presented.
Predicting Interestingness of Visual Content
Predicting Interestingness of Visual Content
Predicting Interestingness of Visual Content
Related Content
To work at scale, a complete image indexing system comprises two components: An inverted file index to restrict the actual search to only a subset that should contain most of the items relevant to the query; An approximate distance computation mechanism to rapidly scan these lists. While supervised deep learning has recently enabled improvements to the latter, t…
This article presents an empirical study that investigated and compared two “big data” text analysis methods: dictionary-based analysis, perhaps the most popular automated analysis approach in social science research, and unsupervised topic modeling (i.e., Latent Dirichlet Allocation [LDA] analysis), one of the most widely used algorithms in the field of compute…
The ability of multimedia data to attract and keep people’s interest for longer periods of time is gaining more and more importance in the fields of information retrieval and recommendation, especially in the context of the ever growing market value of social media and advertising. In this chapter we introduce a benchmarking framework (dataset and evaluation too…
Webinar /Jun 2024
Blog Post /Jun 2025
Blog Post /Jun 2025