Wi-Fi is the preferred way of accessing the Internet for many devices at home, but it is vulnerable to performance problems. The analysis of Wi-Fi quality metrics such as RSSI or PHY rate may indicate a number of problems, but users may not notice many of these problems if they don't degrade the performance of the applications they are using. In this work, we study the effects of the home Wi-Fi quality on Web browsing experience. We instrument a commodity access point (AP) to passively monitor Wi-Fi metrics and study the relationship between Wi-Fi metrics and Web QoE through controlled experiments in a Wi-Fi testbed. We use support vector regression to build a predictor of Web QoE when given Wi-Fi quality metrics available in most commercial APs. Our validation shows root-mean square errors on MOS predictions of 0.6432 in a controlled environment and of 0.9283 in our lab. We apply our predictor on Wi-Fi metrics collected in the wild from 4,880 APs to shed light on how Wi-Fi quality affects Web QoE in real homes.
Predicting the effect of home Wi-Fi on Web QoE
Predicting the effect of home Wi-Fi on Web QoE
Predicting the effect of home Wi-Fi on Web QoE
Related Content
To work at scale, a complete image indexing system comprises two components: An inverted file index to restrict the actual search to only a subset that should contain most of the items relevant to the query; An approximate distance computation mechanism to rapidly scan these lists. While supervised deep learning has recently enabled improvements to the latter, t…
This article presents an empirical study that investigated and compared two “big data” text analysis methods: dictionary-based analysis, perhaps the most popular automated analysis approach in social science research, and unsupervised topic modeling (i.e., Latent Dirichlet Allocation [LDA] analysis), one of the most widely used algorithms in the field of compute…
The ability of multimedia data to attract and keep people’s interest for longer periods of time is gaining more and more importance in the fields of information retrieval and recommendation, especially in the context of the ever growing market value of social media and advertising. In this chapter we introduce a benchmarking framework (dataset and evaluation too…
Webinar /Jun 2024
Blog Post /Jun 2025
Blog Post /Jun 2025