Some structural characteristics of online discussions have been successfully modeled in the recent years. When parameters of these models are properly estimated, the models are able to generate synthetic discussions that are structurally similar to the real discussions. A common aspect of these models is that they consider that all users behave according to the same model. In this paper, we combine a growth model with an Expectation–Maximization algorithm that finds different parameters for different latent groups of users. We use this method to find the different roles that coexist in the community. Moreover, we analyze whether we can predict users behaviors based on their roles. Indeed, we show that predictions are improved for some of the roles when compared with a simple growth model.
Role detection in online forums based on growth models for trees
Role detection in online forums based on growth models for trees
Role detection in online forums based on growth models for trees
Related Content
To work at scale, a complete image indexing system comprises two components: An inverted file index to restrict the actual search to only a subset that should contain most of the items relevant to the query; An approximate distance computation mechanism to rapidly scan these lists. While supervised deep learning has recently enabled improvements to the latter, t…
This article presents an empirical study that investigated and compared two “big data” text analysis methods: dictionary-based analysis, perhaps the most popular automated analysis approach in social science research, and unsupervised topic modeling (i.e., Latent Dirichlet Allocation [LDA] analysis), one of the most widely used algorithms in the field of compute…
The ability of multimedia data to attract and keep people’s interest for longer periods of time is gaining more and more importance in the fields of information retrieval and recommendation, especially in the context of the ever growing market value of social media and advertising. In this chapter we introduce a benchmarking framework (dataset and evaluation too…
Webinar /Jun 2024
Blog Post /Jun 2025
Blog Post /Jun 2025