We consider the problem of identifying people on the basis of their walk (gait) pattern. Classical approaches to tackle this problem are based on, e.g., video recordings or piezoelectric sensors embedded in the floor. In this work, we rely on acoustic and vibration measurements, obtained from a microphone and a geophone sensor, respectively. The contribution of this work is twofold. First, we propose a feature extraction method based on an (untrained) shallow scattering network, specially tailored for the gait signals. Second, we demonstrate that fusing the two modalities improves identification in the practically relevant open set scenario.
Scattering Features for Multimodal Gait Recognition
Scattering Features for Multimodal Gait Recognition
Scattering Features for Multimodal Gait Recognition
Related Content
To work at scale, a complete image indexing system comprises two components: An inverted file index to restrict the actual search to only a subset that should contain most of the items relevant to the query; An approximate distance computation mechanism to rapidly scan these lists. While supervised deep learning has recently enabled improvements to the latter, t…
This article presents an empirical study that investigated and compared two “big data” text analysis methods: dictionary-based analysis, perhaps the most popular automated analysis approach in social science research, and unsupervised topic modeling (i.e., Latent Dirichlet Allocation [LDA] analysis), one of the most widely used algorithms in the field of compute…
The ability of multimedia data to attract and keep people’s interest for longer periods of time is gaining more and more importance in the fields of information retrieval and recommendation, especially in the context of the ever growing market value of social media and advertising. In this chapter we introduce a benchmarking framework (dataset and evaluation too…
Webinar /Jun 2024
Blog Post /May 2025