Electroencephalography (EEG)-based emotion recognition is currently a hot issue in the affective computing community. Numerous studies have been published on this topic, following generally the same schema: 1) presentation of emotional stimuli to a number of subjects during the recording of their EEG, 2) application of machine learning techniques to classify the subjects' emotions. The proposed approaches vary mainly in the type of features extracted from the EEG and in the employed classifiers, but it is difficult to compare the reported results due to the use of different datasets. In this paper, we present a new database for the analysis of valence (positive or negative emotions), which is made publicly available. The database comprises physiological recordings and 257-channel EEG data, contrary to all previously published datasets, which include at most 62 EEG channels. Furthermore, we reconstruct the brain activity on the cortical surface by applying source localization techniques. We then compare the performances of valence classification that can be achieved with various features extracted from all source regions (source space features) and from all EEG channels (sensor space features), showing that the source reconstruction improves the classification results. Finally, we discuss the influence of several parameters on the classification scores.
Emotion recognition based on high-resolution EEG recordings and reconstructed brain sources
Emotion recognition based on high-resolution EEG recordings and reconstructed brain sources
Emotion recognition based on high-resolution EEG recordings and reconstructed brain sources
Related Content
To work at scale, a complete image indexing system comprises two components: An inverted file index to restrict the actual search to only a subset that should contain most of the items relevant to the query; An approximate distance computation mechanism to rapidly scan these lists. While supervised deep learning has recently enabled improvements to the latter, t…
Adding the sense of touch to hearing and seeing would be necessary for a true immersive experience. This is the promise of the growing "4D-cinema" based on motion platforms and others sensory effects (water spray, wind, scent, etc.). Touch provides a new dimension for filmmakers and leads to a new creative area, the haptic cinematography. However design rules ar…
This article presents an empirical study that investigated and compared two “big data” text analysis methods: dictionary-based analysis, perhaps the most popular automated analysis approach in social science research, and unsupervised topic modeling (i.e., Latent Dirichlet Allocation [LDA] analysis), one of the most widely used algorithms in the field of compute…
Webinar /Jun 2024
Blog Post /Jun 2025