Research & Contributions
Other Resources
We propose a novel informed source separation method for audio object coding based on a recent sampling theory for smooth signals on graphs. Assuming that only one source is active at each time-frequency point, we compute an ideal map indicating which source is active at each time-frequency point at the encoder. This map is then sampled with a compressive graph signal sampling strategy that guarantees accurate and stable recovery at the decoder. The graph is built using feature vectors, computed using non-negative matrix factorization, that allows us to connect similar source activations in the time-frequency plane. We show that the proposed approach performs better than state-of-the-art methods at low bitrate.
© COPYRIGHT 2024 INTERDIGITAL, INC. ALL RIGHTS RESERVED.