Human character animation is often critical in entertainment content production, including video games, virtual reality or fiction films. To this end, deep neural networks drive most recent advances through deep learning (DL) and deep reinforcement learning (DRL). In this article, we propose a comprehensive survey on the state-of-the-art approaches based on either DL or DRL in skeleton-based human character animation. First, we introduce motion data representations, most common human motion datasets and how basic deep models can be enhanced to foster learning of spatial and temporal patterns in motion data. Second, we cover state-of-the-art approaches divided into three large families of applications in human animation pipelines: motion synthesis, character control and motion editing. Finally, we discuss the limitations of the current state-of-the-art methods based on DL and/or DRL in skeletal human character animation and possible directions of future research to alleviate current limitations and meet animators' needs.
A Survey on Deep Learning for Skeleton-Based Human Animation
A Survey on Deep Learning for Skeleton-Based Human Animation
A Survey on Deep Learning for Skeleton-Based Human Animation
Research Paper / Oct 2021 / Computer Graphics, Machine learning/ Deep learning /Artificial Intelligence
Related Content
Facial caricature is the art of drawing faces in an exaggerated way to convey emotions such as humor or sarcasm. Automatic caricaturization has been explored both in the 2D and 3D domain. In this paper, we present the first study of facial mesh caricaturization techniques. In addition to a user study, we propose two novel approaches to automatically caricaturize…
Research Paper /Feb 2024 / Wireless communication, 5G, Machine learning/ Deep learning /Artificial Intelligence
The ubiquitous deployment of 4G/5G technology has made it a critical infrastructure for society that will facilitate the delivery and adoption of emerging applications and use cases (extended reality, automation, robotics, to name but a few). These new applications require high throughput and low latency in both uplink and downlink for optimal performance, while…
Research Paper /Apr 2024 / Compression, Volumetric Imaging, Machine learning/ Deep learning /Artificial Intelligence
"Learning-based point cloud (PC) compression is a promising research avenue to reduce the transmission and storage costs for PC applications. Existing learning-based methods to compress PCs attributes employ variational autoencoders (VAE) or normalizing flows (NF) to learn compact signal representations. However, VAEs leverage a lower-dimensional bottleneck that…
Webinar /Jun 2024
Blog Post /Jun 2025
Blog Post /Jun 2025