Posts by InterDigital Comms



Posts by InterDigital Comms

November 25, 2020 / Posted By: InterDigital Comms

On this edition of Getting To Know You InterDigital, Corporate Communications interviews Mike Cortino, InterDigital’s Head of Information Services, to learn more about the department, exciting new projects, and some of the questions keeping Mike busy as we all work from home.

Corporate Comms: Mike, you joined InterDigital this year as the Head of Information Services, at a time when our company, and the rest of the world, was making the transition to work from home. Throughout the journey, we have faced a plethora of challenges as people shifted to make their homes into working offices. Looking back on this year, what word or phrase would you use to describe your first couple of months with InterDigital?

Michael Cortino: I think unique is a great word to describe it. To add to that, I would say exciting because it was something new. Coming in to lead a function that really has the responsibility for enabling the work from home activity made it exciting and made it challenging. I think that's extremely unique, and I will say I was pretty fortunate to join a team that had already started working on the work from home environment. They started laying the foundation before I joined InterDigital so we are well underway, which was great.

CorpComm:  During our recent All Hands you outlined many projects that IS has begun and completed this year. It's clear that your team has been incredibly busy 😊. Could you offer us an overview of the main projects your team has been leading, and the success you've had so far?

Michael Cortino: Within the application space, there's a few key initiatives for us as a team. One is our data warehouse initiative, which is part of the digital transformation program we kicked off earlier this year. That' project’s really important for us as we move forward with analytics in the future and more robust reporting to support all of the functions. We have the application design in place, an environment stood up, and now we're just building out that environment so that we can flip the switch and move it into production, which will happen early next year.

Another initiative is one where we’re moving all of our policies and procedures to a new tool called ConvergePoint, which sits on top of SharePoint. We also made numerous improvements and enhancements in Microsoft D365 to support Finance.

In infrastructure, we migrated to a new data center in France, and implemented a new hyper-converged environment, both large scale initiatives. And we did all of that during COVID, which was pretty challenging, but the team stayed on it and got it done.

We also migrated from Skype to Teams, which was a big move as well. We upgraded many of our conference rooms to support Teams, and even though people weren't really going into offices, we were able to get approval to upgrade a number of those conference rooms throughout our facilities footprint.

Last, but certainly not least, we made some really big strides in the information security space. That's one thing I take a pretty keen interest in because if there's anything that's really going to impact us from a systems perspective as a company, it's bad actors armed with ransomware or phishing campaigns that bring down critical systems. So, we've been focused there and put together a pretty robust plan, inclusive of offense and defense initiatives.

We brought on a vendor to help us with brand protection. Anywhere InterDigital is mentioned in the ether, we get notified and have a vendor who watches over to prevent domain squatting and the like. We also have a number of tools to monitor the dark web and different areas for user IDs, so usernames and password combinations, which in conjunction with the password policy change to encourage a more sophisticated password, helps prevent hacking. And we of course have multifactor authentication, utilizing Duo for a second authentication to log in.

These are all things I think are big wins for us across the various domains of applications, infrastructure and information security – just to name a few.

CorpComm: This year has been one for the history books, without any year like it. Despite that, we were able to accomplish a lot of really wonderful things, given the headwinds that we faced. What would you say is the accomplishment you’re most proud of this year, perhaps something the company at large isn’t aware of?

Mike Cortino: I'm going to start with a broader answer and then hopefully narrow it down a bit. But one thing I would say helps in this unique environment that we're in is that InterDigital is a unique business. Because of that, and because our staff has a professional user base – all experts in their field, many highly educated people in the company – we were all able to migrate to this new way of working pretty seamlessly. That's not the experience that many companies faced, because there are a lot of companies whose user base has a wide spectrum of educational backgrounds, as well as the challenge of manufacturing environments. So, a lot of those companies struggled to make the transition.

We have a highly skilled user base across the company, and that put us in a pretty good position to make the transition. I'm most proud of that, and I'll add extremely fortunate. I joined right at the point where we began working remote, so, I didn't interact with anyone face to face. And thankfully, I did not have anyone in the company or executive team calling me saying, ‘Mike, we have a major issue’, or ‘My team isn’t able to do XYZ’.

I was pretty fortunate. My predecessor put in place a strategy of cloud first, and my hats off to them for doing that. I think that really positioned us well. Again, I was fortunate to land here and have a smooth transition and focus on the team, learn the business and just kind of get acclimated. So, I'm most proud of the work the team did leading up to this unique environment and the way they managed through it as the entire company transitioned to working remote.

CorpComm: Coming on the heels of this year and the variety of ways 2020, and the COVID pandemic, have influenced and reshaped our lives, what should we look for in 2021?

Mike Cortino: I mentioned at the All Hands the work we're doing around the Future of the Desktop. I think that's going to be pretty interesting for us at InterDigital. What we mean by that is, today we issue employees a laptop when they join the organization, and we have a phone policy where people bring their own phone. So, we are looking at what is it going to take for us to go to an environment that is completely “bring your own device”.

This would bring us to a position where we inform employees how to access all of the necessary applications through devices they purchase. We will develop, maintain, and support the access points. We will be working through the details in 2021 and look forward to rolling out the new program in 2022.

That's going to be a big game changer for us as a company. In our industry, research and innovation is so important, and a lot of engineers are accustomed to working on machines that are special or customized to the work they're doing. This would give our employees the flexibility to use a device of their choice and it allows us (IS) the ability to focus on what we do best, which is developing, maintaining, and supporting our InterDigital landscape.

Every company I've been with has talked about a BYOD, “Bring Your Own Device” strategy, but they never prioritized the effort and committed the resources. But now we are truly going to take it to the next level. And when we think about this from a recruitment perspective – the flexibility of our work policy and the flexibility to use a device you are comfortable with – packaged all together makes InterDigital even more of an attractive company.

CorpComm: Following the rebranding of Information Services as “IS”, we often use the phrase “IT IS what IT IS” to hearken to its IT origins. Today you’ve outlined the many possibilities for IS, so to continue in that spirit, we wanted to ask you a few fun “Either Or” questions. There is no wrong answer, only an honest one. 😊 So, first question is, Mac or PC?

Michael Cortino: I'm going to go PC because I don't own a Mac. Both my kids have Macs, but I don't own one. I don't have a preference, but I'm going to go PC.

CorpComm: Netflix or Xbox?

Michael Cortino: Netflix. I'm not a gamer, so Netflix.

CorpComm: Cooking at home or ordering in from your favorite restaurant?

Michael Cortino: Ordering in, which happens just about every day. We don't cook.

CorpComm: Favorite cuisine?

Michael Cortino: Oh, that's so tough. I just love food. Favorite, if I could only have one, I'm going to go with lobster ravioli in a vodka blush sauce.

CorpComm: Michael Jordan or Tom Brady?

Michael Cortino: Jordan. Yeah. Jordan.

CorpComm: And our last question, in the spirit of Thanksgiving, mashed potatoes or stuffing?

Michael Cortino: Mashed potatoes. But that's a trick question, because I like to mix them both. I like to take them and kind of slam them together. But mashed potatoes was the first thing that ran into my head, so, I'm going to go with that.

CorpComm: Thank you Mike and thank you for letting us get to know you and IS better. We are so looking forward to these new IS features and initiatives, stay tuned for updates on all the exciting happenings discussed within.

November 4, 2020 / Posted By: InterDigital Comms

If you missed the 6G Symposium, check out our blog for a full overview of Day 1 highlights, a review of Day 2’s keynote speech by National Science Foundation's Dr. Thyaga Nandagopal, and recaps of the Symposium’s most thoughtful panels. Recordings of the sessions will be available soon.

While the 6G Symposium squared its focus on shaping a vision of 6G, the reality remains that the increasing deployment and commercialization of 5G will shift attention away from academic and research environments and towards production and implementation arenas. As we look to 6G, however, the academic and research community have an opportunity to take a fresh look and ask: "How can we develop and test new ecosystems for the generations beyond 5G?”

Moderated by Northeastern University Professor Abimanu Gosain, the panel discussion “Platforms for Experimental Research: Are we ready for 6G?” shared the perspectives of representatives from some of the most renowned research organizations on the opportunities and limitations for experimental exploration in 6G.

Julius Kusuma of Facebook's Connectivity Lab remarked how the last eight months of the COVID-19 pandemic brought connectivity issues to the forefront and highlighted the need for the industry to be both flexible and responsive. "This pandemic has provided us with a strong reminder that the world is diverse and the needs and use cases are diverse," he said. "For instance, who would have thought eight months ago that as consumers we'd be so concerned with upload speeds as we are today?"

As Vice Director of the National 6Genesis Flagship at the University of Oulu in Finland, Ari Pouttu spearheads laboratory research on wireless connectivity, devices and circuits, distributed computing, and a range of services and applications. Reflecting on the University’s body of research and looking ahead, he remarked that the research community must "join forces with stakeholders from all different verticals to take into account KPIs, use cases and methodologies to develop new thinking beyond just technology and productivity."

Vertical use cases are certainly a research specialty at North Carolina State University, where Professor Ismail Guvenc's team conducts its research. "We are researching Unmanned Aerial Vehicle Traffic Management (UTM) systems in conjunction with a NASA platform for drone air traffic control," he shared. "It's a great platform for a variety of use cases including wireless hotspots, agriculture, public safety, package delivery and more." He mentioned that NASA is also working on advanced air mobility systems for aircraft that operate at higher altitudes than drones because connectivity is patchy in the skies. He shared other verticals where testbeds are being developed, including smart buildings/smart cities, rural connectivity, AR/VR and several others across a range of indoor, outdoor, urban, suburban and rural environments.

From the perspective of a wireless operator, Parallel Wireless CEO Steve Papa offered a somewhat controversial perspective — "5G is the last of the monolithic pervasive, homogeneous G's." He added, "up until now, the network was needed by pretty much everyone in the same way. That's all changing now." While his comments may seem controversial on the surface, they point to a concrete reality: wireless networks are no longer built to cater to a single dominant use case. The development process and testing and research requirements for some use cases will likely progress along separate timelines now, posing an interesting new environment for research and testing organizations.

To recap the key take-aways and most thought-provoking presentations from the 6G Symposium, please join us for a 6G Symposium Sync Up webinar on Thursday, November 5 at 1:00 p.m. ET, hosted with Fierce Wireless. Symposium organizers Doug Castor from InterDigital and Tommaso Melodia from Northeastern University will join industry experts to digest and make sense of the event’s varying perspectives on the 6G roadmap, the role of AI and Machine Learning in 6G networks, spectrum sharing approaches, public-private research partnerships, and much more.

You may register here.

October 30, 2020 / Posted By: InterDigital Comms

If you missed the 6G Symposium, check out our blog for a full overview of Day 1 highlights, a review of Day 2’s keynote speech by National Science Foundation's Dr. Thyaga Nandagopal and fireside chat with NIST Director Dr. Walter G. Copan, and recaps of the Symposium’s most thoughtful panels. Recordings of the sessions will be available soon.

The second day of the 6G Symposium continued the discussion around the challenges posed by spectrum, but with a specific focus on spectrum sharing. The panel's moderator, Monica Paolini, founder and president of wireless consulting firm Senza Fili, began the session with a baseline question for all panelists: What is the best way to share spectrum efficiently that brings everyone on board?

5G is currently being rolled out and delivering 1.5 GBps in certain cities in the U.S., a country that leads the world in high-band spectrum allocation. "When we talk about spectrum sharing, we need to talk about adjacent channel users too, not just co-channel users," said FCC CTO Monisha Ghosh. She illustrated this point by addressing the passive users in higher bands like weather satellites as well. "In mid-bands, around 8-10 GHz and below, where it's still best for wide area cellular use, the picture is different,” she added. “There it's more about sharing with incumbents. And unlicensed services have to protect primary users."

The 6G, or the “Next G” will face many of the same issues as 5G. Ghosh pointed out that with the convergence and proliferation of unlicensed spectrum usage for cellular, the hope is that industry can begin designing systems that enable those running on licensed and unlicensed spectrum to work together. In short, it is clear that 6G will require better spectrum sharing modalities than we have today.

To punctuate this discussion, the panelists discussed the rollout of the CBRS system in the 3.5 GHz band earlier this year. This band had previously been allocated exclusively to the U.S. Department of Defense to be used for radar systems, but is now being shared with commercial systems. This shared model system has been operational since January 2020. Panelists indicated that the system is exceeding expectations. "There have been no interference complaints so far," said Andrew Clegg, Spectrum Engineering Lead for Google. "We are due for some innovation in the propagation model world," he added, describing that the propagation models for CBRS date back to the 1960s. "That's closer to Marconi than it is to today." Google, he said, is aiding this research by using its massive database of geodata to build new propagation models.

Echoing the call for propagation model research was Sheryl Genco, director of NTIA's Institute for Telecommunications Sciences (ITS). "Our data science group is just beginning to take a whole nation approach to build a propagation model for the whole world," she said. "We are also looking toward real-time spectrum management, which could really help prevent interference to incumbents." She encouraged industry participation in this research effort, reminding audiences that NTIA has an open data policy and open use policy, meaning their propagation models are open and available for anyone to use.

Tom Rondeau, Program Manager for DARPA, offered the Department of Defense perspective on spectrum sharing. "Maxwell's equations haven't changed, but the way we interact with them has evolved," he said. "We don't just share spectrum; we share the knowledge of how we use it." Rondeau described how DARPA is doing advanced research around phased arrays, spread spectrum, and software defined radio systems. The biggest challenges, he says, are often around computational power. Network slicing is one way they have found to help reduce that computational power requirement.

Simply put, 6G is about significantly increasing performance, in all aspects, over 5G. Masoud Olfat, Senior Director of Technology Development for Federated Wireless, discussed that the overall goal is to make spectrum sharing more efficient, and to discover new ways to exploit spectrum sharing. "We are looking at open RAN, computational edge networks, network slicing models and NFV," he said. "We need to learn how we can use spectrum sharing to improve overall performance of the wireless network and people's lives."

To recap more of the key take-aways and thought-provoking presentations from the 6G Symposium, please join us for a 6G Symposium Sync Up webinar on Thursday, November 5 at 1:00 p.m. ET, hosted with Fierce Wireless. Symposium organizers Doug Castor from InterDigital and Tommaso Melodia from Northeastern University will join industry experts to digest and make sense of the event’s varying perspectives on the 6G roadmap, the role of AI and Machine Learning in 6G networks, spectrum sharing approaches, public-private research partnerships, and much more.

You may register here.

October 27, 2020 / Posted By: InterDigital Comms

If you missed the 6G Symposium, check out our blog for a full overview of Day 1 highlights, a review of Day 2’s keynote speech by National Science Foundation's Dr. Thyaga Nandagopal and fireside chat with NIST Director Dr. Walter G. Copan, and recaps of the Symposium’s most thoughtful panels. Recordings of the sessions will be available soon.

The second day of the Symposium explored some of the challenges facing the true realization of 6G’s potential, namely the limitations of spectrum.

As wireless data traffic grows exponentially, the question remains: how will we support it? This foundational question provided the framework to begin the panel “Conquering the Spectrum” on Day 2 of the 6G Symposium, moderated by Northeastern University Associate Professor Josep Jornet.

The panel offered a timely discussion to address many of the questions raised during Dr. Nandagopal’s keynote, namely “where will 6G fit in the radio spectrum?” Upcoming 3GPP Release 17 is expected to extend 5G up to roughly 71 GHz, but the most existing radio spectrum lies below 95GHz. It is widely understood that the industry must undertake much innovation to develop use cases and technologies that allow radio communications in the Terahertz bands. There was much discussion about the frequency ranges, which are expected to range between 60 GHz all the way to 3 THz, but less has been said about use cases it will enable.

Discussion moderator Jornet offered a few suggestions, including Terabit wireless backhaul, inter-satellite and space networks, or even potentially for sensing applications like non-damaging imaging and high-resolution radar. Overall, he encouraged the panelists to use the session to answer questions about devices, test beds and materials, as well as propagation and channel modeling. The conversation also addressed questions around signal processing, networking, policy, regulation, and standardization.

Gerhard Schoenthal, COO of Virginia Diodes, Inc., outlined the very real challenges of spectrum availability. "Wireless products have to cover wide swatch of spectrum," he said, adding that since materials like iridium phosphide are not as well developed as other semiconductor materials, the products face a materials challenge at higher frequencies.

Signal propagation was also highlighted as a major challenge by Thomas Kurner, professor at TU Braunschweig. "Particularly in indoor environments, small objects play a role in propagation, reflection and scattering," said Kurner. "Even something as simple as wallpaper over a concrete wall can cause multiple reflections at higher frequencies." He went on to say that while these problems currently exist in the millimeter Wave (mmW) bands, they will become more pronounced at the THz levels, therefore further innovation is needed before such solutions reach the mainstream.

Despite these challenges, early 5G mmW deployments are underway, and are achieving high peak data rates greater than 1 GBps. However, coverage is still intermittent for now. The primary challenges with implementing mmW are directionality, blockage, and range. In addition, there will be greater challenges with device power consumption, high network density and an apparent lack of clear use cases for the technology. "In upper mmW bands, like around 140GHz, there are some savings possible, but power may still be prohibitive because these devices pull a lot of wattage," said Sundeep Rangan, Professor at NYU, pointing toward some potential use cases. "At around 140GHz there may be a good use case to use this band for fronthaul and drones/UAVs, or possibly in point-to-point backhaul links, such as line of sight MIMO at ranges of up to around 1.5 kilometers."

Offering another academic perspective was Edward Knightly, Professor at Rice University, who described exciting research around high frequency beam steering. He described that, because different frequencies emit at different angles, his team has seen the potential for beam steering through adjustments to the antenna. He also discussed how new sensing capabilities could be made possible at the THz level, which could enable high resolution millimeter scale radar with a single antenna. There are also security implications of very narrow beams too – narrow beams emitted at different frequencies can thwart eavesdroppers and side-channel attacks, which would unlock new security capabilities.

There are regulatory and policy considerations for spectrum as well. Relative to other technologies, wireless is a highly regulated industry. Policymakers and regulators frequently ask questions like "how much spectrum does 6G need, and how much is available?" Agencies and government institutions will be looking for more concrete numbers than the industry can currently provide. This issue came up earlier this year with concerns regarding potential 5G interference with NOAA's weather forecasting satellites, which are passive users of some of the adjacent spectrum allocated for 5G. "A study is underway about minimizing interference and enabling a win-win sharing of spectrum," said Mike Marcus, former FCC spectrum policy lead. "Weather satellites will be protected," he added, reminding the audience that the ITU rules on passive bands will not change until 2027, at the earliest.

This riveting discussion was underscored by an interesting consensus among panelists. All agreed that, while there is uncertainly today about where exactly the eventual 6G spectrum will be, key stakeholders will work together with a shared vision to enable the exciting new possibilities in these high frequency bands. Knightly concluded by saying, "if you have devices that can give you millimeter-scale resolution sensing of the world around you, the sky's the limit in terms of what's possible."

To recap more of the key take-aways and thought-provoking presentations from the 6G Symposium, please join us for a 6G Symposium Sync Up webinar on Thursday, November 5 at 1:00 p.m. ET, hosted with Fierce Wireless. Symposium organizers Doug Castor from InterDigital and Tommaso Melodia from Northeastern University will join industry experts to digest and make sense of the event’s varying perspectives on the 6G roadmap, the role of AI and Machine Learning in 6G networks, spectrum sharing approaches, public-private research partnerships, and much more.

You may register here.

October 23, 2020 / Posted By: InterDigital Comms

With a successful kickoff to the inaugural 6G Symposium, we continued the momentum on Day 2. On Wednesday, a diverse collection of panelists from across industry, academia and government took a deeper look into the many technical and visionary issues facing 6G’s, and the industry at large’s, future.

If you missed Day 1 of the Symposium, a recap of the full day is available here, and recordings of the sessions will be made available soon.

Day 2 began with a brief synopsis of the Symposium’s key takeaways by InterDigital's Doug Castor and Northeastern University's Tommaso Melodia, highlighting some of the hundreds of questions received from the more than 4500 event registrants. The organizers then turned the stage to Dr. Thyaga Nandagopal, Deputy Division Director for the National Science Foundation, to deliver the day's keynote address.

Keynote Session: Wireless Spectrum for NextG

Dr. Nandagopal's remarks, "Wireless Spectrum for NextG" began the second day of the 6G Symposium on a more contrarian note: he quickly introduced the concept he calls "NextG" – as opposed to 6G – which he says is after 5G because "by the time people switch to the next generation, that's when the real explosion of the growth and the killer apps takes place."

He gave a preview of one of the day's main themes – spectrum – highlighting that while we know 5G will use spectrum up to the 50 GHz band, the “NextG” will probably begin above 50 GHz. Looking ahead to the upper limit of that spectrum for 6G/NextG, it remains unclear where that upper limit is. This lack of clarity he described provided a launching pad for the fascinating perspectives shared by the panelists throughout the day.

Dr. Nandagopal went on to share that historically in wireless, the computational power curve has been accelerating faster than the availability of spectrum. This reality has brought significant challenges for the industry, as well as dramatic opportunities for innovation, particularly in the areas of spectral efficiency. As the industry moves toward higher frequency bands and greater availability of spectrum, this raises new questions. Historically, higher frequencies meant faster and better technology, and certainly more network capacity, and smaller antennas meant more compact devices. "While these were historically true," said Nandagopal, highlighting major spectrum reallocations dating back as far as the 1940s in the U.S., "many of these things will not be true in the sub-6GHz millimeter wave bands used in 5G."

The proliferation of radio technologies means that spectrum is scarce. Technology is one way the industry has traditionally addressed that scarcity, because moving incumbent users to different frequencies is very hard and takes tremendous time and resources. Furthermore, it takes time to try new methods of spectrum allocation. But, just as with any innovation, where there's a will there's a way.

Spectrally-speaking, there is currently a bit of "beachfront" spectrum available, meaning the most desirable, and also most scarce, spectrum in the 600MHz to 6GHz range. Nandagopal expanded the beach analogy to say that "if we dredge some sand and expand the beach, we can move into the 6-7GHz bands, then add spectrum up to the 10GHz band." This kind of innovation, especially if we further expand the range into the 20GHz band, will allow the industry to reap the benefits of mid-band usage and high spectral efficiencies. From there, with another 4GHz of spectrum, we can see better peak rates and more efficiency from massive MIMO. At even higher frequencies – reaching the mmWave range from 30 to 300 GHz – there would be enormous bandwidth gains that we don't yet know how to use. These high frequencies present a truly greenfield opportunity. In the Terahertz range, above 300GHz up to 3THz, we’ll inevitably see new challenges emerge and power will present an enormous challenge, but over time breakthroughs will happen.

Looking historically, Nandagopal noted that the current model of using shared spectrum in tandem with unlicensed spectrum is essentially the same model the United States has used, more or less unchanged, since the early 1990s. Through that historical lens, he implored the audience to look at a wide-open future.

"Imagine if we had a set of unlicensed and unrestricted frequencies spanning low, mid and high bands. Imagine a world where devices can self-identify the desired swath of frequencies and power levels they need to get their data transmitted," he illustrated, going on to explain that AI and machine learning would help us achieve such a vision, and the significant government and private investment currently underway in this exciting arena.

Dr. Nandagopal received the day’s first question about quantum computing, responding that he felt quantum computing was indeed coming, but not as soon as many might have hoped. He cautioned that quantum computing was still at least 10 years, if not 15 years, away from full realization, and probably 25-30 years away from reaching widespread commercial use. More encouragingly, he shared that while quantum computing would help solve complex problems of the future, there remain “low hanging fruit” challenges for the wireless industry to address in the near term while quantum matures.

Dr. Nandagopal concluded his remarks with a simple statement: "There's more than enough spectrum to go around, but there's a need to innovate, and to leverage R&D." We agree and look forward to many years of exciting research and development on the next generations of wireless technology.

Fireside Chat with NIST Director Dr. Walter D. Copan

To share the U.S. government perspective on the path and pursuit to excellence in science, technology, and research, NIST Director and Under Secretary of Commerce for Standards and Technology Dr. Walter Copan engaged in a fireside chat on the U.S. technology roadmap, moderated by Northeastern University Senior Vice Provost for Research David Luzzi.

Dr. Copan began the discussion by sharing that standards development is a priority for NIST. "Our focus is on American innovation and to advance industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life," he said. The organization places a significant focus on advanced communications technology and standards for 5G and beyond, with the goal of strengthening America's global competitive position. This message closely follows those shared during Day 1’s fireside chat with FCC Chairman Ajit Pai.

Professor Luzzi began the conversation by asking about NIST's position on, and involvement in, disaster resilience, an area where the wireless industry has shown some need for improvement. Dr. Copan described how the agency is applying its experience in disaster resilience, with a focus on standards, the future of supply chain integrity, and looking at lessons learned. "We seek to learn from failure points," he said. "From there we work on building recovery models."

The conversation then returned to one of the day’s hottest topics: spectrum sharing. Dr. Copan noted, "we are very excited about work that's come out of NASCTN - the National Advanced Spectrum and Communications Test Network," adding that "this work has provided tools for the co-existence of radar and 5G mmW models, and related use cases." He went on to describe how the research and standards work in the mid-band is essential, and how CBRS use cases have provided important validated datasets.

Dr. Copan reminded audiences that the NIST encourages public participation, noting that their datasets are available for research purposes. "Some data we have needs to be anonymized for privacy purposes, but generally our data is available," Dr. Copan said. "Members of the alliance get full benefit, but at a high level all of that information is broadly available, and NASCTN provides a rich data source as well."

To close out the day’s discussions, the focused shifted from considerations for future research to our current reality. The United States has had a relative slow start in 5G, and has a new opportunity to overcome that hurdle and improve the U.S.’s current leadership position 5G. Dr. Copan outlined efforts on the 5G deployment road map, highlighting the transparent ways the federal government is working on the roadmap. "Many of the lessons have been taken to heart," Dr. Copan said. "ATIS has announced a 6G alliance, and that should be a strong opportunity as well.” He added that NIST supported the initiative, of which InterDigital is a Founding Member. One outgrowth of this work, he added, is to encourage stakeholders to look at the future of U.S. innovation and the legislative and policy changes it can enable. He suggested that policymakers could incentivize work by the private sector and encourage collaborative research and innovation, an area where the U.S. has lagged behind its global counterparts at times in the past. Dr. Copan ended on the encouraging note that, on the whole, the NIST is looking to incentivize research and innovation and other strategies in ways on par with, and exceeding, the country’s peers.

To recap the key take-aways and most thought-provoking presentations from the 6G Symposium, please join us for a 6G Symposium Sync Up webinar on Wednesday, November 5 at 1:00 p.m. ET, hosted with Fierce Wireless. Symposium organizers Doug Castor from InterDigital and Tommaso Melodia from Northeastern University will join industry experts to digest and make sense of the event’s varying perspectives on the 6G roadmap, the role of AI and Machine Learning in 6G networks, spectrum sharing approaches, public-private research partnerships, and much more. You can register here.

Check back later this week for more highlights and new updates about the 6G Symposium.

October 20, 2020 / Posted By: InterDigital Comms

The kickoff of the first annual 6G Symposium was a huge success, with more than 4000 participants from around the globe registering to hear insights and perspectives on the 6G vision, emerging 6G technologies, and the role of AI in wireless networks. Through panels and presentations, we learned how foundational technologies like blockchain, AI, network coding, and THz may drive a fresh look at what’s optimal for 6G architectures and spectrum sharing policies.

For the first time ever, InterDigital joined ranks with the Institute of Wireless Internet of Things at Northeastern University to kick off the first-of-its-kind 6G Symposium, a two day virtual event dedicated to shaping a clear vision for 6G.

Taking place as we’re beginning to see the earliest phases of commercial 5G, the 6G Symposium kicked off with the important level-setting question: "What’s next?"

The Symposium is dedicated to looking ahead to the next 10 years of research and standard setting to explore the potential 6G holds, what it may become, and the new opportunities it might unlock. There’s a general understanding among stakeholders in this field that 6G development takes time, resources, and a commitment to global cooperation to develop a successful wireless ecosystem. Day 1 of the Symposium helped us to better shape the path ahead.

So what exactly will 6G look like? We know 6G will enable faster delivery speeds, but it will also bring changes to the wireless interface and architecture, introduce new radio models, and support a massive proliferation of devices. Fun Fact: early estimates suggest that by 2030, there will be 500 billion devices across a global human population of roughly 8 billion. That's more than 60 devices for every human on earth. To support this future and bring 6G to the forefront, players from across the wireless ecosystem must collaborate to find the best solutions for this exciting and impending future.

Keynote: AT&T’s Mazin Gilbert

Mazin Gilbert, AT&T VP of Network Analytics and Automation, opened Day 1 of the Symposium with a visionary view of the future beyond 5G. During his keynote address, Gilbert noted that the COVID-19 pandemic has altered people’s primary means of interactions, and the timing of the recent 5G commercialization is somewhat fortuitous because every new generation of wireless was built to adapt to a new way of life. While 5G remains a “mobile” technology, it also has natural characteristics that make it well suited for a world where we are considerably less mobile than before. As we look ahead to 6G, it’s reasonable to assume that we may need very different networks and systems to fulfill our new ways of life. In the future, networks will need sophisticated infusions of AI/ML and certain levels of autonomy to enable them to self-organize. Our networks will need to evolve with our needs, and while 5G networks are more decentralized than their earlier counterparts, future 6G networks will take decentralization to new levels.

In a 6G world, new devices like XR glasses will enable new visual experiences through things like browsing the news, providing real-time performance updates during a morning workout, or help us locate a friend, and the gift shop, at a crowded sporting event. Cars will have sophisticated sensors and intelligence, and live events and concerts will enter our living rooms in exciting and immersive ways. And for those working from home, interactive video conferencing will move beyond two-dimensions and become more immersive.

Throughout his keynote, AT&T’s Gilbert described modern technology’s disruptions in agriculture and industry, including the use of robotics and video surveillance to pinpoint the precise time for harvest and the increasing automation of factories and dynamism of industrial robots. To support these changes, networks will need to become more open and disaggregated. The network will no longer be a closed box, but instead opened through APIs, and enable personalized experience not possible today. Due to the proliferation of the mobile edge cloud, each person’s computing power and storage will follow more closely wherever they go, and network slices will enable and guarantee service for particular use cases.

While exciting, the 6G vision brings significant research challenges as well. To enable the experiences we envision, players from across the ecosystem need to collaborate to optimize spectrum sharing and efficiency, develop new technologies and adaptive learning algorithms, anticipate and mitigate cybersecurity attacks, and address the vital topics of battery life and energy efficiency. In the future, networks will need to be self-organizing to ensure traffic is dynamically optimized across intensely densified deployments.

6G, the next generation of wireless, is still largely a vision. But even today we know that once it takes shape it will open a world of possibility and a wealth of opportunity. As the day continued, the Symposium panelists and speakers explored how.

Panel 1: Shaping Up 6G: Drivers, Use-Cases and KPI Requirements

In many technology visioning exercises, KPIs and driving factors are often determined by technical elements and technology solutions; however, this panel looked beyond those issues to address real world social and economic indicators, many of which have generational consequence, like the industry's impact on climate change and global poverty. Today, most companies recognize that sustainability isn't just a feel-good trend: sustainability, and sustainability in wireless, is good business.

The wireless industry is, for example, approaching the end of the smartphone base station era and entering into an era where devices, only some of which are consumer handsets, connect to a variety of smart surfaces. Panelist Dr. John Smee, Vice President of Engineering at Qualcomm, suggested that from a research standpoint we are halfway through the 5G lifecycle, even though 5G commercialization is beginning in earnest this year. He noted that 6G will bring things like data-driven system design, where we use AI to help design the air interface and help optimize system design and performance.

Samsung SVP and Head of the Advanced Communications Research Center Sunghyun Choi described how new form factors such as XR glasses, VR headsets and hologram devices will be built with low power consumption in mind, while running on networks that use advanced AI and machine learning to optimize energy consumption, among other things.

Virginia Tech professor Walid Saad noted that next generation networks will be more capable of addressing a range of limitations in reliability, mobility and coverage, especially in rural areas, to bring the world more consistent levels of service and availability. Karri Kuoppomaki, Vice President of Technology Development and Strategy at T-Mobile, agreed, sharing that "6G will play critical role in enhancing mobile broadband."

Another interesting driver of 6G identified by the panel is the trend toward standardization of non-terrestrial networks (NTNs), which are beginning to be included in 3GPP Release 17 for 5G, according to Ericsson’s Director of Industry Engagement and Research Afif Ossrrian. NTNs are communications networks that exist in areas not tied directly to land – networks between aircraft, on oceangoing ships, and even in space.

Throughout the discussion, panelists, and industry at large, share a consensus that radio access networks are a major consumer of energy. This panel explored how radio access networks can become more efficient by becoming smarter through the use of AI or with the use of technologies that put certain devices in low power states when they aren’t needed/in use. This method can both reduce network traffic and save considerable power, even in massively dense IoT networks, while the use of a shared spectrum will augment the efficiency of radio access networks.

Panel 2: Understanding the 6G Tech Landscape

Since the beginning of wireless, each new generation has introduced a key technology that enabled its growth. The first generation of cellular -- known as 1G -- brought voice communications, 2G brought data, 3G brought broadband, and 4G brought mobile video. We have yet to determine the "killer app" for 5G, but it utilizes the well-known "triangle of technologies" model to determine new 5G applications. Each corner of the triangle represents one technology ideal and includes: enhanced mobile broadband (eMBB), ultra-reliable low latency communications (URLLC), and massive machine type communications (mMTC). While it is too soon to definitively determine the technologies 6G will deliver, the panelists shared their views on some emerging trends.

Prabhakar Chitrapu, Chair of the Small Cell Forum, outlined the technologies, deployments and services that come along with each wireless generation. As we move from one generational era to the next, the deployments and services from the prior generation must first mature, then new technologies are introduced, after which the deployments and services mature again, and the cycle repeats.

According to Takehiro Nakamura, SVP and General Manager of NTT DoCoMo, the 6G era will be a time of extremes: extreme high throughput, extreme coverage, extreme low energy and low cost, extreme low latency, extreme high reliability, and extreme massive connectivity. These extremes may become the defining feature of 6G, moreso than any single defining technology. In addition, he shared that 6G may be defined by new network topologies that emphasize advancements in areas like device-to-device communications and the addition of NTNs.

Following the trend of 5G, experts expect 6G to continue the evolution toward software-defined networking. As industry moves away from proprietary eNodeB and closed, telephony-based core architecture towards a distributed, user-defined, cloud and commodity hardware-based model in 5G, these evolutions and focus on open architecture and open standards will likely continue. "The sea change here is de-coupling the technology from the architecture," said Larry Peterson, CTO of the Open Network Foundation.

When it comes to spectrum, 6G is positioned to find ways to exploit new spectrum and more aggressively utilize the spectrum that is available. Quantum computing will play a role in 6G as well, albeit a potentially paradoxical one. On the one hand, quantum encryption, storage, and possibly even blockchain technology will help make aspects of 6G a reality. On the other, quantum can also pose new cybersecurity threats, possibly even before it becomes an asset.

Lastly, the panel was somewhat divided when determining which standard will introduce 6G, but most panelists agree that Release 19 or 20 will be the earliest true 6G standard.

Panel 3: The Role of AI/ML in 6G Wireless Systems

AI and machine learning are the hottest topics in wireless today, and it is a topic that grows in interest, and complexity, as we move beyond 5G. During the “Role of AI/ML in 6G Wireless Systems” panel, DeepSig CTO Tim O'Shea described the evolution by saying, "ML & AI technology is behind all of these: device density, spectral and spatial efficiency and optimization, data driven AI applications, reliability and QoS, bandwidth, latency, energy efficiency and ultra-massive and distributed MIMO." In next generation networks, complex AI/ML algorithms will help maximize hardware efficiency and resources for countless high throughput devices and significantly improve capacity between different network components.

When exploring the use of AI in radio access networks, John Davies, Program Manager at DARPA, shared that while so-called "cognitive radio" is not a new idea, and the early research is encouraging (though questions remain whether the technology exists to make it worthwhile in the near term.) Certain aspects of the new technology require further study, such as how to ensure spectrum sharing is handled fairly and in predictable ways. Davies noted that, "it will be a challenge to figure out how to manage the oversight of these radios." As a result, industry may need new rules, and even new algorithms and data sets, to address that uncertainty.

InterDigital Engineer John Kaewell highlighted that ML will be "a powerful tool in the 6G system designer's toolbox." He described how ML can provide impressive performance gains over traditional systems design approaches. He also noted that for ML to play a major role in 6G wireless, we will need several pieces in preparation, including large and open datasets, advancements in deep learning models and training methods, and ready availability of high computational power.

While the expert panelists shared a diverse array of viewpoints, all agreed on one topic: Industry can't let go of domain knowledge. Despite the allure of these intelligent networks, industry can't just turn every function over to AL/machine learning. To be effective and manageable, AL/ML networks must be built on strong foundations of human knowledge and human oversight – machine learning will surely help with network functions too complex for human management. And that reality will unlock tremendous potential and efficiency.

Fireside Chat with FCC Chairman Ajit Pai

Day 1 of the Symposium rounded out with an engaging fireside chat between InterDigital CEO Bill Merritt and FCC Chairman Ajit Pai.

In a wide-ranging and frank discussion, the two discussed the ways the FCC's role has changed in recent years and how the Chairman expects it, and its responsibilities, to evolve as the industry moves toward 6G. Pai praised the private sector for stepping up to deliver on the promise of 5G, and particularly highlighted the United States' leadership role in the global standards development.

Throughout the discussion, the pair discussed topics as specific to the industry as precision agriculture and as broad as the importance of standardization. In a lively discussion on spectrum, the Chairman highlighted the FCC's somewhat diplomatic role in helping carriers work together to solve spectrum availability challenges in recent years.

A pressing question perhaps on everyone's mind was the influence of China in the wireless ecosystem. The Chairman explained how the FCC's position toward companies like Huawei and ZTE was not about singling out those companies, but instead establishing a risk-based framework to protect the interests of the American people. Moreover, he highlighted that issues of security and privacy, and those like rural broadband access, were not partisan issues, but instead American issues in need of a unified solution.

The fireside chat ended the first day of the 6G Symposium on a very positive note, ending with a reminder of the importance of open standards while encouraging innovation and developing new technology solutions to emerging problems in the next evolution of wireless – 5G, 6G, and beyond.

Join us for Day 2 of the 6G Symposium for a deeper dive into spectrum sharing, experimental research, and all things 6G. Please visit www.6gsymposium.com for more information.